

Offshore Safety: ESU Policy Support

Ivan PEARSON

http://ie.jrc.ec.europa.eu/

5 April 2011

- 1. Introduction
- 2. Offshore Challenges in Europe
- 3. The impact assessment process
- 4. Challenges in measuring costs and benefits
- 5. Methodology
- 6. Baseline scenario
- 7. Evaluating policy options

- Deepwater Horizon, Montara.
- Indigenous production important to EU consumption.
 - Oil: 196 million tons produced in EU 27 + NO
 - Gas: 269 MTOE in EU 27 + NO
- In the EU + Norway, over 90% of oil and over 60% of gas produced comes from off-shore operations.
 - North Sea: NO, UK, NL, DK, DE
 - Mediterranean: IT, CY, MT
 - Black Sea: RO, BU.

- Over 1,000 offshore installations in the NE Atlantic alone.
- 'Frontier oil':
 - Deep water
 - High pressure
 - Challenging climactic conditions
- Entrance of new/smaller companies
- Ageing infrastructure.
- Technological advancement: innovative well design and more subsea infrastructure.
- New exploration in MSs with little or no experience.
- Little international standardization.

We need:

- 1. The **expected future costs** of offshore accidents (baseline scenario);
- 2. the **additional costs** of implementing the proposed policies in Europe;
- 3. and the extent to which implementing the proposed policies is likely to **reduce losses**.

- Broad range of causes and consequences.
- Multifaceted role in the European economy.
- Rarity of large-scale accidents.
- Effectiveness of policy options.

- Semi-quantitative approach

– Focuses on select key dimensions of cost where:

- the scale of the impact is most significant;
- its nature is well-understood;
- we have dependable data.
- Case studies to estimate the costs of policy options within general but reliable bounds.

- Costs of major offshore accidents
 - 1) Losses to infrastructure, 2) Losses resulting from oil spills.
 - Sources
 - Case histories
 - Actuarial Publications (Grey Material)
- The probability of major accidents
 - Methodological challenge: Low sample size
 - Sources
 - Industry Sources for Quantitative Risk Assessment

Operation		Blowout Probability / Unit	Unit	Annual No. Units in European Waters	Annual Probability of at least one Blowout in European Waters
Drilling	Exploration Drilling, deep (normal wells)	3.1×10 ⁻⁴	per drilled well	383 (estimated)	1.1×10 ⁻¹
	Exploration Drilling, deep (HPHT wells)	1.9×10 ⁻³	per drilled well	29 (estimated)	5.3×10 ⁻²
	Development Drilling, deep (normal wells)	6.0×10 ⁻⁵	per drilled well	635 (estimated)	3.7×10 ⁻²
	Development Drilling, deep (HPHT wells)	3.7×10 ⁻⁴	per drilled well	48 (estimated)	1.8×10 ⁻²
Well Interve ntion	Completion	9.7×10 ⁻⁵	per operation	608 (estimated)	5.7×10 ⁻²
	Wirelining	6.5×10 ⁻⁶	per operation	10735 (estimated)	6.7×10 ⁻²
	Coiled Tubing	1.4×10 ⁻⁴	per operation	505 (estimated)	6.8×10 ⁻²
	Snubbing	3.4×10 ⁻⁴	per operation	316 (estimated)	1.0×10 ⁻¹
	Workover	1.8×10 ⁻⁴	per operation	1074 (estimated)	1.8×10 ⁻¹
Producing Wells		9.7×10 ⁻⁶	per well year	6315	5.9×10 ⁻²
(excluding external causes)					
Producing Wells		3.9×10 ⁻⁵	per well year	6315	2.2×10^{-1}
(external	causes)				1
				Total:	6.45×10 ⁻¹

$$p = 1 - \prod_{i=1}^{11} (1 - p_i')$$

The annual probability of at least one blowout in European waters is around 6.5×10⁻¹, or 65%.

But:

Scandpower calculates that the blowout frequency for gas wells is
2.6 times that for oil wells. Assuming an equal number of oil and gas wells in Europe...

```
1.8×10-1, i.e. 18%
```

 Det Norske Veritas calculates that should a blowout occur, there is a 56% chance of it lasting 2 days or less, and only a 15% chance of it lasting more than 2 weeks.

- Historical figures suggest a recurrence rate of 35 years for a blowout lasting more than 2 weeks in Europe.
- Assuming an average cost of €5 billion, this amounts to costs of €140 million per year.
- Add to this an annual figure of €65 million in property losses resulting from less costly, but more common, major accidents, and we can estimate a total annual figure of over €200 million in direct, tangible costs for offshore accidents in Europe.

Assumption: As many policy options are already at least partially implemented, case studies drawn from their experience can give us an indication of many dimensions of impact.

Sources

- For the effectiveness of proposed policies
 - Official reports on previous accidents (qualitative).
 - Statistics from before and after an offshore regulatory regime was introduced.
- For the regulatory and compliance costs
 - Data gathered from regulators and industry
 - (EC administrative burden calculator)

14

Ivan L. G. PEARSON Scientific Officer European Commission | Joint Research Centre | F03 - Energy Security Unit Phone: +31 22456 5466 | Fax: +31 22456 5641 Ivan.PEARSON@ec.europa.eu