

Petten, 5th of April 2011

Crisis Simulation in the European Gas Transmission System

András Szikszai

- Monte-Carlo approach (statistical analysis and/or optimization)
- Time dependency
- Duration and consumption test
- Daily balancing
- Balanced system disruption restoring balance
- Inflow: cross-border pipelines, storages, production, LNG
- Outflow: cross-border pipelines, demand critical consumption [the larger quantity of system operability (e.g. to maintain minimum pressure) and protected consumption needed]

Assumptions & scenarios

3

- General assumptions
 - extreme (1-in-20 years) weather conditions in the beginning of January at a country level, for all countries
 - cut of the supply from the Ukraine
 - duration 30 days
- Optimizing flows to consumption

What is the highest level of consumption for a set period?

What is the range of distribution of consumption loss in a set period?

Results – Ukraine

Petten, 5th of April 2011

4

Affected countries: Germany, Poland, Czech Republic, Slovakia, Italy, Slovenia, Austria, Hungary, Romania, Croatia, Bosnia and Herzegovina, Serbia, Bulgaria, Macedonia, Greece

Changes in natural gas balance (mcm/day)					
	consumption	production	storage	Ing	pipeline
Austria	0	1.3	17	0	-18
Bulgaria	-5	0	0	0	-5
Czech Republic	0	0	21	0	-21
Germany	0	0	130	0	-130
Greece	0	0	0	3	-3
Hungary	-15	0	15	0	-30
Italy	0	0	104	0	-104
Poland	0	0	4	0	-4
Romania	-18	12	7	0	-37
Slovakia	0	0	2	0	-2
Slovenia	0	0	0	0	0
Bosnia	-1	0	0	0	-1
Serbia	-8	0	0	0	-8
Croatia	0	3	0	0	-3
Macedonia	-1	0	0	0	-1

Results – Ukraine

Petten, 5th of April 2011

Assumption: -7 mcm/day to the reduced demand of the group of HU, RO, BG, BA, RS, FYROM

Ukraine & Belarus – reverse flows

6

Petten, 5th of April 2011

JRC

Technical simulations

- Technical (hydraulic) model
- 9 countries' system at present
- Several simulation options
 - Extreme weather conditions
 - Disruptions (technical, political, cyber, etc.)
 - New infrastructures
- Extendable

- Focus on the high pressure transportation system and daily balancing
- Demand set to the highest level in the last 20 years
- Construct the baseline (pre-crisis) status of the natural gas system
- Simulate a disruption
- Facilitate possible countermeasures in order to restore balance in the system with the least possible cost

Countermeasures

Disruption – mitigation strategy 1

10

Petten, 5th of April 2011

Storage use:

- PL, = maximum
- CZ, AT, SK, H = normal peak

Consumption:

PL = 90 %

CZ, AT, SK, H = normal peak

Disruption – mitigation strategy 2

to restore normal operation

12

Petten, 5th of April 2011

Petten, 5th of April 2011

JRC

to restore normal operation

Petten, 5th of April 2011

EUROPEAN COMMISSION

to restore normal operation

Petten, 5th of April 2011

JRC

EUROPEAN COMMISSION

Disruption – mitigation strategy 2

new infrastructure

16

Petten, 5th of April 2011

JRC

EUROPEAN COMMISSION

Storage use:

PL, = maximum

CZ, AT, SK, H = normal peak

Consumption:

PL = 95 %

CZ, AT, SK, H = normal peak

Disruption – mitigation strategy 2 new infrastructure

17

Petten, 5th of April 2011

JRC

Petten, 5th of April 2011

18

THANK YOU!